

Institute of Automation and Information Technology Department of "Cybersecurity, information processing and Storage"

EDUCATIONAL PROGRAM 6B06301 - "INFORMATION SECURITY"

Code and classification of the field of education: 6B06 Information and communication technologies. Code and classification of training directions: 6B063 Information security Group of educational programs: B058 Information Security Level based on NQF: 6 Level based on IQF: 6 Study period: 4 Amount of credits: 240 Educational program «6B06301 - Information security» was approved at a meeting of the Academic Council of KazNTU named after K.I.Satpayev.

Protocol No _10__ of «__06__» __03___2025.

Reviewed and recommended for approval at a meeting of the Educational and Methodological Council of Kazntu named after K.I.Satpayev.

Protocol No. _3_ of «__20_» __12_2024.

The educational program 6B06301 «Information security" was developed by the academic committee in the direc

Ф.И.О.	Last name first name patronymic	Post	Place of work	Signature
Chairman of the A	Academic Committee:			
Pokusov Viktor Vladimirovich		Chairman	Kazakhstan Information Security Association	A.S.
Academic staff:				
Aitkhozhaeva Evgeniya Zhamalkhanovna	Candidate of Technical Sciences, Associate Professor	Professor	NJSC "KazNRTU named after K.I. Satpaev"	Ali 1x0)
Rakhmetulayeva Sabina Batyrkhanovna	PhD	Professor	NJSC "KazNRTU named after K.I. Satpaev"	Perf
Satybaldiyeva Ryshan Zhakanovna	Candidate of Technical Sciences,	Associate Professor	NJSC "KazNRTU named after K.I. Satpaev"	Caf
Serbin Vasily Valerievich	Candidate of Technical Sciences,	Associate Professor	NJSC "KazNRTU named after K.I. Satpaev"	A
Zhumagaliev Birzhan Izimovich	Candidate of Technical Sciences, Associate Professor	Associate Professor	NJSC "KazNRTU named after K.I. Satpaev"	Du
Alimseitova Zhuldyz Keneskhanovna	Doctor of PhD	Associate Professor	NJSC "KazNRTU named after K.I. Satpaev"	duf
Khalich Ibragimovna Yubuzova	Doctor of PhD	Associate Professor	NJSC "KazNRTU named after K.I. Satpaev"	yh.
Representatives of e	employers:			-
Mamyrbayev Orken Zhumazhanovich	Doctor of PhD Associate Professor	Deputy Director General	RSE "Institute of Information and Computing Technologies"	5
Konysbayev Amret Tuyakuly	Candidate of Physico- mathematical Sciences	President	Association of Innovative Companies of the FEZ "PIT"	Akad
Batyrgaliev Askhat Bolatkhanovich	Doctor of PhD Associate Professor	The border service of the National Security Committee, counterintelligence	Military unit № 01068,	Top
Teaching staff:		é		
Abilkayyrova Alina Serikkyzy		3rd year student	NJSC "KazNRTU named after K.I. Satpaev"	Asul
Elle Venera		Student 1st year, doctoral studies	NJSC "KazNRTU named after K.I. Satpaev"	070

Table of contents

List of abbreviations and designations

- 1. Description of the educational program.
- 2. The purpose and objectives of the educational program.
- 3. Requirements for evaluating the learning outcomes of an educational program.
- 4. Passport of the educational program.
- 4.1. General information.

4.2.

- Relationship between the achievability of the formed learning outcomes according to educational program and academic disciplines
- 5. Curriculum of the educational program.
- 6. Additional educational programs.(Minor)

List of abbreviations and designations

IS Information securityITP Individual training planEP Educational Program

1. Description of the educational program.

The educational program «Information Security» is aimed at teaching students general education, basic and specialized disciplines with the achievement of appropriate competencies:

- To provide practice-oriented training of specialists in the field of information security, ensuring the security of systems and networks, cryptographic and technical protection of information for operational and project activities.

- To prepare graduates for production and technological activities related to the process of organization, design, provision, management of databases, network technologies, cloud technologies, intrusion prevention and detection systems, organizational and legal aspects of information security, focused on meeting the expectations and requirements of users; to organizational and managerial activities related to maintenance, organization and information security management.

Create conditions for continuous professional self-improvement, development of social and personal competencies of graduates (broad cultural outlook, active citizenship, commitment, organization, diligence, sociability, ability to argue and make organizational and managerial decisions, knowledge of modern information technologies, fluency in several languages, striving for self-development and commitment to ethical values and a healthy lifestyle life, the ability to work in a team, responsibility for the final result of their professional activities, civic responsibility, tolerance), social mobility and competitiveness in the labor market.

The EP is based on the state educational standard for higher professional education; the professional standard; the Atlas of New Professions, and is developed in accordance with the ESG and the Sustainable Development Goals (SDGs).

The content of the disciplines of the educational program has been developed taking into account the relevant educational programs of the world's leading universities, the international classifier of professional activity in the field of information security.

Graduates of the educational program "Information Security" are focused on the organization, design and development of systems for the protection and security of applied information for all sectors of the economy, government organizations and other fields of activity.

The educational program ensures the application of an individual approach to students, the transformation of professional competencies from professional standards and qualification standards into learning outcomes. Student–centered learning is provided - the principle of education, which assumes a shift of emphasis in the educational process from teaching (as the main role of the teaching staff in the "translation" of knowledge) to teaching (as an active educational activity of the student).

The educational program provides training of specialists in the field of information security in 3 directions:

- Security of systems and networks. Training of specialists who ensure the security of systems and network technologies of a wide range. The educational program provides the acquisition of knowledge on computer information security technologies, network technologies, organization of computing systems and networks, administration of systems and networks, security of cloud technologies, acquisition of skills in designing and developing secure databases, intrusion prevention and detection systems.

- Cryptographic protection of information. Training of specialists in cryptographic protection of information. The educational program provides the acquisition of knowledge on the mathematical foundations of cryptography, various models, methods and means of cryptographic information protection, computer information protection technologies, the development and design of cryptographic information protection tools, the basics of standardization and certification of information security tools, the acquisition of skills in the construction of cryptographic information security tools.

Technical protection of information. Training of specialists in technical protection of information. The educational program provides the acquisition of knowledge in the field of electronics, digital circuitry, microprocessor technology, programming of microcontrollers, knowledge of various methods and means of technical protection of information, organization and management of the information security service, ensuring the continuous functioning and operational activities of IT support.

The educational program was developed on the basis of an analysis of the labor functions of information security engineers, system administrators, information security specialists stated in professional standards.

Representatives of Kazakhstani companies and associations, specialists of departmental structures in the field of protection and security participated in the development of the educational program.

In case of successful completion of the full bachelor's degree course, the graduate is awarded a bachelor's degree in information and communication technologies under the educational program "Information Security".

2. The purpose and objectives of the educational program

The purpose of the EP:

Training of a competitive generation of technical specialists in the field of information protection and security in the labor market, proactive, able to work in a team, possessing high personal and professional competencies.

The global goal of the Information Security education program is to contribute to the achievement of the Sustainable Development Goals (SDGs):

- Goal 4: Quality education (Ensuring inclusive and equitable quality education and encouraging lifelong learning opportunities for all);

- Goal 8: Decent work and economic growth (Promoting sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all);

- Goal 9: Industrialization, Innovation and Infrastructure (Building resilient infrastructure, promoting inclusive and sustainable industrialization and innovation);

- Goal 11: Sustainable cities and human settlements (Ensuring openness, security, resilience and environmental sustainability of cities and human settlements);

- Goal 16: Peace, Justice and effective institutions (Promoting a peaceful and inclusive society for sustainable development, ensuring access to justice for all, and creating effective, accountable, and participatory institutions at all levels)

EP tasks:

- socio-humanitarian and professional bachelor's degree training in the field of information security in accordance with the development of science and production, as well as with the needs of information security clusters in Kazakhstan, National Security of the Republic of Kazakhstan, national research centers for sustainable development. (SDG 4)

- integration of educational and scientific activities; (SDG 4)

- establishing partnerships with leading universities of the near and far abroad in order to improve the quality of education; (SDG 4,17)

- expansion of relations with customers of educational services, employers in order to determine the requirements for the quality of training of specialists, conducting courses, seminars, master classes, internships, industrial practices. (SDG 17)

The content of the educational program «Information Security» is implemented in accordance with the credit technology of training and is carried out in the state and Russian languages.

The educational program will make it possible to implement the principles of the Bologna process. Based on the choice and independent planning by students of the sequence of studying disciplines, they independently form an individual study plan (IUP) for each semester according to the Working Curriculum and the Catalog of elective disciplines. The volume of mathematical, natural science, basic and language disciplines has been increased in the educational program.

The following disciplines are studied: "Digital circuitry", "Algorithmization and programming basics", "Information fundamentals of information security", "Organizational and legal aspects of information security and computer forensics", "Computer architecture and consistency of operations", "Security of operating systems", "Cryptographic information security systems", "Security of cloud technologies", "Computer Networks", "Blockchain Technologies", "Computer Information Protection

Technologies", "Design and protection of server databases", "Social Engineering and Ethical Hacking", "Technical means and methods of information protection", "Designing secure Web applications", etc.

Students undergo practical training in banking structures, government and departmental structures, in such companies as JSC "National Information Technologies", LLP "Pacifica" - integrator in the field of information security, LLP "Galaxy", ALE «for Analysis and Investigation of Cyber Attacks», etc.

According to the academic mobility program, the best students have the opportunity to study at leading foreign universities according to the corresponding EP.

3. Requirements for evaluating the learning outcomes of an educational program

3. Passport of the educational program

4.1. General information

N⁰	Field name	Note
1	Code and classification of the field of	6B06 Information and communication
	education	technologies
2	Code and classification of training areas	6B063 Information security
3	Group of educational programs	B058 Information security
4	Name of the educational program	6B06301 Information Security
5	Brief description of the educational	The purpose of the educational program is to teach
	program	students general education, basic and specialized
		disciplines with the achievement of relevant
		competencies.
6	Purpose of the EP	Preparation of a competitive generation of technical
		specialists in the field of information protection and
		security for the labor market, proactive, able to
		work in a team, possessing high personal and
7	Type of ED	Now ED
/ 8	The level of the NPK	New EF
9	ORC Level	6
10	Distinctive features of the FP	0
11	List of competencies of the educational	Information security Network technology security
11	program:	Cryptographic protection of information. Technical
	P 8	protection of information.
12	Learning outcomes of the educational	LO 1 Know the basics of information security and
	program:	its problematic aspects. Be able to apply basic
		indicators of information security. The ability to
		apply biometric information security technologies.
		To be able to use a number of implementation of
		algorithms to solve practical problems
		LO 2 Ensure the integrity and reliability of data in
		databases using integrity constraints, views,
		triggers, and stored procedures. Perform backup,
		Les the capabilities of the SOL language to protect
		detabase systems, manage access rights, anorunt
		database systems, manage access rights, encrypt
		database objects.
		IO3 The ability to think logically, use induction
		and deduction methods determine cause-and-effect
		relationships, be economically literate, understand
		various situations, including when working in a
		team with people with special needs.
		· · ·
		LO 4Know the architecture of computer systems,
		the principles of construction. Select the elements
		of electronic circuits, make the necessary
		calculations, make a mathematical description of

	the functioning of the devices and determine their characteristics; determine the parameters of semiconductor devices and circuit elements.
	LO 5Perform typical tasks of design, deployment and technical support of local and global networks; Administer networks in modern operating systems. Ensure the safety and resiliency of the network and servers.
	LO 6The ability to understand and apply methodologies and technologies for performing graphic work on a computer, express technical ideas using a drawing, present diagrams in a graphical form, use computer graphics and graphic dialogue tools.
	LO 7Use the methods of constructing various models of data types, information processing algorithms; make rational use of the opportunities provided by the algorithmization technique. Apply a unified modeling language, implement a structural and object-oriented approach to working with tools.
	LO8 Analyze the principles of constructing cryptographic algorithms; develop and apply cryptographic systems; analyze and resolve issues of cryptographic protection of information and the application of modern cryptographic methods of information protection in order to promote innovation. Ability to apply the mathematical foundations of cryptosystem algorithms.
	LO 9 The ability to organize measures to ensure their own safety and the safety of teams in professional activities and social emergencies.
	LO 10 Apply the basic methods of formalizing reasoning, the basic concepts of the theory of logical functions, theory of algorithms, graph theory, coding theory; use the conceptual apparatus and methods of discrete mathematics to analyze mathematical models in solving problems of professional activity.
	LO 11 Use the fundamental concepts of mathematics, physics and mechanics in professional activities. Conduct mathematical proofs, solve mathematical problems and problems. Be competent in the application of information theory to ensure the protection and security of information.

		LO 12 Apply database technology for the secure organization, receipt, storage, processing and transmission of information. Have a basic understanding of secure database design and protection. Ensure the integrity and reliability of data in databases, including for the sustainability of their development. Be competent in the creation, development and design of secure Web applications.
		LO 13 Ability to perform hands-on analysis and use data leak prevention systems. To manage security policies and all types of work of the information protection service The ability to determine the optimal structure of the information protection service. Develop regulatory and methodological documents on the organization and functioning of the information protection service.
		LO 14 Select elements of electronic circuits, make the necessary calculations. Participate in the development of projects of various electrical components and assemblies using microcontrollers. Program in C language.
		LO15 The ability to identify possible channels of information leakage, to carry out technical protection measures. Apply passive and active methods and means of information protection. Perform engineering and technical protection measures and practically apply measures to protect objects and information from technical intelligence tools.
		LO 16 The ability to apply virtualization systems and cloud technologies to solve practical problems and find vulnerabilities in virtual machines. Be able to apply secure cloud technologies and the Internet of Things for system security sustainability
13	Form of training	Full - time
14	Duration of training	4-7 years old
15	Volume of loans	240
16	Languages of instruction	Russian, Kazakh, English (30%)
17	Academic degree awarded	Bachelor's Degree in Information and Communication Technology
18	Developer(s) and authors:	

4.2. Relationship between the achievability of the formed learning outcomes based on educational program and academic disciplines

N⁰	Name of the	Brief description of the discipline	Numbe					G	ene	rated	d lea	rning	g outc	omes	(code	s)			
	discipline		r of	PO1	PO	PO	PO	PO	PO	PO	PO	PO9	PO1	PO1	PO1	PO1	PO1	PO1	PO1
	-		credits		2	3	4	5	6	7	8		0	1	2	3	4	5	6
		The cycle o	of genera	l edu	catio	on st	ıbje	cts is	s a										
		n	nandato	ry co	mpo	nent	t												
1	Foreign language	English is a discipline of the	10																
		general education cycle. After																	
		determining the level (according																	
		to the results of diagnostic testing																	
		or IELTS results), students are																	
		divided into groups and																	
		disciplines. The name of the																	
		discipline corresponds to the																	
		level of English language																	
		proficiency. When moving from																	
		level to level, the prerequisites																	
		and post-requirements of																	
		discipline are observed.																	
2	Kazakh (Russian)	The socio-political, socio-cultural	10																
	language	spheres of communication and																	
		functional styles of the modern																	
		Kazakh (Russian) language are																	
		considered. The course highlights																	
		the specifics of the scientific																	
		style in order to develop and																	
		activate students' professional																	
		and communication skills. The																	
		course allows students to																	
		practically master the basics of																	
		scientific style and develops the																	

		ability to perform structural and semantic text analysis.									
3.	Physical Culture	The purpose of the discipline is the practical use of skills in performing the basic elements of athletics techniques, sports games, gymnastics and a set of standards for general physical training, including professionally applied physical training or one of the sports, methods of conducting independent physical exercises.	8								
4.	Information and communication technologies (in English)	Required component. The objective of studying the discipline is to acquire theoretical knowledge about information processes, new information technologies, local and global computer networks, information security methods; gain skills in using text editors and tabular processors; create databases and various categories of application programs.	5		V						
5	The history of Kazakhstan	The course examines historical events, phenomena, facts, and processes that took place in Kazakhstan from ancient times to the present day. The sections of the discipline include: introduction to the history of Kazakhstan; steppe empire of the Turks; early feudal states on the	5								

		tomitomy of Varalyhatan									
		Kozakhatan during the Mongol									
		Kazakiistan during the Mongol									
		conquest (XIII century);									
		medieval states in the XIV-XV									
		centuries. The main stages of the									
		formation of the Kazakh									
		statehood are also considered: the									
		era of the Kazakh Khanate of the									
		XV-XVIII centuries. Kazakhstan									
		as part of the Russian Empire;									
		Kazakhstan during the period of									
		civil conflict and in the									
		conditions of a totalitarian									
		system; Kazakhstan during the									
		Great Patriotic War; Kazakhstan									
		during the period of									
		independence and at the present									
		stage.									
6.	Philosophy	Philosophy forms and develops	5								
		critical and creative thinking,									
		worldview and culture, provides									
		knowledge about the most									
		general and fundamental									
		problems of existence and									
		provides them with a									
		methodology for solving various									
		theoretical and practical issues.									
		Philosophy expands the horizon									
		of vision of the modern world.									
		forms citizenship and patriotism									
		promotes self-esteem awareness									
		of the value of human existence									
		It teaches you how to think and									
		act correctly develops practical									
		act correctly, develops practical									

		and cognitive skills, and helps you find ways to live in harmony with yourself, society, and the world around you.										
7.	Module of socio- political knowledge (sociology, political science)	The discipline is designed to improve the quality of both general humanitarian and professional training of students. Knowledge in the field of sociology and political science is the key to effective professional activity of a future specialist, as well as for understanding political processes, forming a political culture, developing a personal position and a clearer understanding of their responsibilities and tolerant attitude towards people with special needs.	3		v							
8.	Cultural studies and psychology	The module of socio-political knowledge (cultural studies, psychology) is designed to familiarize students with the cultural achievements of mankind, to understand and assimilate the basic forms and universal patterns of culture formation and development, to develop their aspirations and skills to independently comprehend the wealth of values of world culture for self- improvement and professional	5		v							

		growth. During the cultural studies course, the student will consider the general problems of cultural theory, leading cultural concepts, universal patterns and mechanisms of culture formation and development, the main historical stages of the formation and development of Kazakh culture, its most important achievements. During the course, students acquire theoretical knowledge and practical skills, forming their professional orientation from the perspective														
		of psychological aspects.														
	l	The cycle of general	educati	on su	ibiect	ts C	omp	oner	nt of ch	oice		1	1	1	1	
					- <u>j</u> .		P									
1.	Fundamentals of anti-	Purpose: to increase public and	5			v					v					
	corruption culture and	individual legal awareness and														
	law	legal culture of students, as well														
		as to form a knowledge system														
		and a civic position on combating														
		corruption as an antisocial														
		phenomenon. Content:														
		improvement of socio-economic														
		relations of Kazakh society,														
		psychological features of corrupt														
		behavior, formation of an anti-														
		corruption culture, legal														
		responsibility for acts of														
		corruption in various fields.														
2	Fundamentals of	Purpose: formation of financial	5			v					v					
	financial literacy	literacy of students on the basis														

		of building a direct link between the acquired knowledge and their practical application. Content: practical use of various financial management tools, saving and increasing savings, competent budget planning, obtaining practical skills in calculating and paying taxes and correctly completing tax reports, analyzing financial information and navigating financial products to choose an adequate investment strategy.										
3	Fundamentals of Economics and Entrepreneurship	Purpose: Formation of basic knowledge about economic processes and business skills. Content: The discipline is studied in order to develop skills in analyzing economic concepts such as supply and demand, market equilibrium. The basics of business creation and management, development of business plans, risk assessment and strategic decision-making are included.	5		V			v				
4	Ecology and life safety	Purpose: formation of ecological knowledge and consciousness, obtaining theoretical and practical knowledge on modern methods of rational use of natural resources and environmental protection. Contents: the study of the	5	v			v					

		problems of ecology as a science, the laws of the functioning of natural systems and aspects of environmental safety in working conditions, environmental monitoring and management in the field of its safety, ways to solve environmental problems; safety of life in the technosphere, natural and man-made emergencies.												
		The	cycle of	i basi	c disc	eiplir	nes							
	Γ	Th	e univer	rsity	comp	onen	nt				г – т		 1	
5	Algorithmization and programming basics	The course covers the basic concepts of programming: operator, variable, procedure, function, and data type. The basic structures of algorithms such as linear, branched, and cyclic are considered. The course covers the basic forms of data representation: strings, structures, arrays, lists. Separate topics are devoted to the creation of widespread sorting algorithms, searching for the minimum and maximum values in an array, string processing, iterative and recursive algorithms, building flowcharts of algorithms and developing programs based on them	4						v	v				
6	Architecture of	Computing systems of various	5							v		v		
	computer systems	architectures are the hardware												1

		part of information technology, which reached a global character and content by the end of the 20th century. Multiprocessor systems, which also include computer networks, make it possible by changing their architecture to optimize the parameters of the main processes of information technology: processing, accumulation, data transmission and knowledge representation.								
7	Operating system security	The purpose of the discipline is to master the basic means and methods of ensuring information security. Upon graduation, students will learn to understand the principles of building information security. They will be able to classify and assess threats to information security; they will master professional terminology in the field of information security. They will be able to use the tools of operating systems to ensure the effective and safe functioning of automated systems; they will learn how to evaluate the effectiveness and reliability of operating system protection.; they will acquire skills in	5		v					v

		planning the security policy of operating systems										
8	Introduction to the blockchain	The course is aimed at mastering various aspects of blockchain technology. Students study related topics of cryptography, wallets, nodes, smart contracts, and tokens. Main topics: the basics of blockchain, consensus algorithms, understanding cryptocurrencies and smart contracts, the use of blockchain technology in the real world	4							v		
9	Introduction to the specialty	Security facilities. Data processing systems. Areas of information security. Information security and problematic aspects. Basic information security indicators. Information security risks. Socio-technical attacks. Information resource protection technologies. Methods and tools of information protection. Software products for information protection. Physical tools to protect information. Prospects for the development of information security systems, intellectualization. Information security management.	5	v					v			
10	Introduction to Web programming	The methods of designing WEB applications using modern web programming technologies and software tools for solving applied	5				v		v			

		mahlama yain a mathada af]	ſ	I	[
		problems using methods of										
		debugging and testing web										
		applications in the loop-back										
		system are studied. The										
		discipline examines the basics of										
		creating web applications;										
		classification of software tools;										
		structure of web programs; web										
		applications running on the client										
		and server sides; principles of										
		developing an interactive user										
		interface; organization of										
		navigation; interface of server										
		interaction with application										
		programs; syntax and notation of										
		markup languages, data										
		structures, and scripting										
		languages. Students gain skills										
		and insight into current										
		perspectives and trends in the										
		development of web										
		programming.										
11	Discrete mathematics	The discipline covers coding	5					v	v			
		theory, set theory, graph theory,										
		and mathematical logic. Namely,										
		the basics of coding theory, set										
		theory, graph theory; the theory										
		of logic algebra; the										
		mathematical apparatus of										
		synthesis and analysis of digital										
		devices, convert Boolean										
		functions, synthesize minimal										
		combination schemes; perform										
		coding.										

10	I		5										
12		Application of information	3						v	v			
	iundamentals of	theory in information security											
	information protection	systems, basic concepts of											
		information theory, measures and											
		forms of representation of											
		discrete information, number											
		systems for representing											
		numerical information, problems											
		of information transmission,											
		alphabetical representation of											
		information, basics of encoding											
		and encryption of discrete											
		information.											
13	Computer graphics	The course covers computer	5				v						
	1 0 1	image generation, namely the											
		mathematical and algorithmic											
		foundations of computer											
		graphics, raster graphics											
		algorithms 2D and 3D modeling											
		and polygonal models. The											
		technologies of using the											
		OpenGL graphics library for											
		generating 2D and 3D images											
		and the use of auxiliary libraries											
		are considered. After studying											
		the discipline students will be											
		chle to moster any graphic to als											
		able to master any graphic tools,											
		continue studying and using											
1.4	0 1	graphic libraries.	~					 					
14	Computer networks	i ne program of the training	Э			v							
		course is aimed at familiarizing											
		students with the basics of											
		organization, construction,											
		architecture and principles of											

		functioning of computer networks. The course focuses on the application of skills to organize the work of real networks and examines communication tools, protocols and standards of networks. As a result of mastering the discipline, students will learn how to configure and configure communication tools, select firewalls, and operate computer networks.										
15	Mathematics I	Purpose: to introduce students to the fundamental concepts of linear algebra, analytic geometry and mathematical analysis. Develop the ability to solve typical and applied tasks of the discipline. Content: Elements of linear algebra, vector algebra and analytic geometry. Introduction to analysis. Differential calculus of a function of one variable. The study of functions using derivatives. Functions of several variables. Partial derivatives. The extremum of a function of two variables.	5					v	v			
16	Mathematics II	Purpose: To teach students integration methods. To teach you how to choose the right method for finding the original. To teach how to apply a certain	5				v	v				

		integral to solve practical problems. Contents: integral calculus of a function of one and two variables, theory of series. Indefinite integrals and methods of their calculation. Certain integrals and applications of certain integrals. Improper integrals. Theory of numerical and functional series, Taylor and Maclaurin series, application of series to approximate calculations.										
17	Mathematics III	Purpose: To teach students integration methods. To teach you how to choose the right method for finding the original. The discipline is a continuation of Mathematics II. The course includes sections: ordinary differential equations and elements of probability theory and mathematical statistics. Differential equations with separable variables, homogeneous, in full differentials, linear inhomogeneous differential equations with constant coefficients, systems of linear differential equations with constant coefficients, finding the probability of events are studied.; calculation of numerical	5					V	v			

		characteristics of random variables; the use of statistical methods for processing experimental data.											
18	Microelectronics	The principles of operation, parameters, characteristics and application features of semiconductor devices are considered. Designing various circuits for electrical signal amplifiers and generators based on diodes, bipolar and field- effect transistors and working out the features of their functioning. Operational amplifiers. Differential amplifiers. Feedback. The effect of feedback on the main indicators and characteristics of amplifiers. Power amplifiers. Classification of filters and their composition.	5		v			v			v		
19	Fundamentals of cryptographic information protection	This course covers the basic concepts, terms and concepts of the discipline. Cryptology, cryptography, cryptanalysis. Durability, security, imitation, authenticity. Modern cryptographic methods of information protection. The basic principles of building cryptoalgorithms.	5						v				
20	Designing and protecting server databases	The course examines the basics of designing secure databases and ensuring their protection.	5	v						v			

		Students will learn how to apply database technologies to solve practical problems of developing and protecting secure server databases. In addition, they will study ways to store data at the physical level, types and ways of organizing file systems;- understanding problems and the main ways to solve them when sharing data; – exploring the capabilities of databases that support various models of data organization.										
21	Designing digital devices	The program of the training course is aimed at familiarizing students with the basics of designing digital devices. The course focuses on the application of formal logic and automata theory to solve practical problems of designing digital devices.	5		v			v				
22	Physics I	Purpose: to study the basic physical phenomena and laws of classical and modern physics; methods of physical research; the influence of physics on the development of technology; the relationship of physics with other sciences and its role in solving scientific and technical problems of the specialty. Contents: mechanics, dynamics of	5					v	v			

		rotational motion of a solid, mechanical harmonic waves, fundamentals of molecular kinetic theory and										
		thermodynamics, transport										
		phenomena, continuum										
		mechanics, electrostatics, direct										
		current, magnetic field,										
		Maxwell's equations.										
23	Physics II	Objective: to develop students'	5					v	v			
		knowledge and skills in using										
		fundamental laws, theories of										
		classical and modern physics, as										
		well as methods of physical										
		research as the basis of a										
		professional activity system.										
		Contents: harmonic vibrations,										
		damped vibrations. alternating										
		current, wave motion, laws of										
		refraction and reflection of light,										
		quantum optics. the laws of										
		thermal radiation, photons, their										
		characteristics, wave function,										
		electrical conductivity of metals,										
		atomic nucleus, its structure and										
		properties, binding energy,										
		radioactivity.										
24	Digital circuitry	Fundamentals of construction of	5		v			v			v	
		electrical circuit diagrams of										
		nodes (blocks) of various										
		electronic devices, including										
		modern computers, methods of										
		application of various										
		(semiconductor) logic elements.										

		Creation of examples of schematic diagrams of the simplest electronic components based on CAD "Altium Designer" and design of a printed circuit board. Modeling the operation of electrical circuits using various programs (for example, MICROCAP).									
25	Java technologies	The purpose of the study is to master and understand the basic properties, tools and utilities of the Java platform, to teach students how to develop applications for a wide range of tasks, and to provide the basis for further study of Java technologies. Summary: The course is dedicated to studying the principles of OOP necessary for Java development, reviewing the basics of the language, working with loops, arrays, libraries for working with files, databases, the network, for building a windowed user interface (GUI), etc. Expected results: Creation of a graphical user interface, use of classes, establishment of communication with the database and with the server.	5	f basic	discin	lines	v	v			
		The	Compo	nent o	f choic	ce					

	10 6		~					T						
	IC configuration	The discipline studies the	2		v			v		v				
		mechanisms of the IC												
		platform.: The enterprise".												
		Working with the mechanisms of												
		the platform is demonstrated by												
		the example of solving a learning												
		task similar to tasks in real												
		enterprises. Topics such as												
		operational accounting,												
		accounting, complex periodic												
		calculations, business process												
		mechanisms, and managed data												
		locks during document												
		processing will be considered.												
		Mastering the course will allow												
		you to understand the principles												
		of building the 1C: Enterprise												
		system and master the												
		configurator's tools and skills of												
		working with the system.												
27	Vulnerability	The purpose of mastering the	5									v	v	
	identification and	discipline is the theoretical and	-											
	analysis	practical training of students in												
	uniun jono	the field of information security												
		The course content includes												
		questions about typical												
		vulnerabilities of network												
		protocols operating systems and												
		applications. Concepts such as												
		ethical backing and social												
		angineering are also considered												
		Mathods of attacks on software												
		avetome, such as program												
		systems, such as program												
		memory corruption, code		1										

		injustion on the alignt on company										
		injection on the cheft of server										
		side, etc., as well as techniques										
		and properties of modern										
		programming languages to										
		prevent the appearance of										
		vulnerabilities of this kind are										
		considered.										
28	Inclusive education	The purpose of the discipline: to	5		v							
		give students an idea of the										
		foreign and domestic learning										
		experience based on an ideology										
		that excludes any discrimination;										
		on the development and										
		implementation of conditions that										
		ensure equal treatment of all										
		people and the need for special										
		conditions with special										
		educational needs: to introduce										
		the principles of inclusive										
		education: with the organization										
		of inclusive education in										
		educational institutions										
29	Pentest Tools and	The course examines standards	5			v			 	v	 	
	Ethical Hacking	and penetration testing tools and	5			•				·		
	Ethiotal Hacking	their role in information security										
		audits. Subjects of the discipline										
		studied: Categories of pentest										
		their features. Programs and										
		distributions for pantest the										
		principles of their construction										
		and functionality. Ethical										
		hooking The was of particular										
		nacking. The use of pentest tools										
		in ethical hacking to detect										

		vulnerabilities, study threats, and identify cybercrimes.										
30	The basics of artificial	Purpose: to familiarize students	5				v					
	intelligence	with the basic concepts, methods										
		and technologies in the field of										
		artificial intelligence: machine										
		learning, computer vision, natural										
		language processing, etc.										
		Contents: general definition of										
		artificial intelligence, intelligent										
		agents, information retrieval and										
		state space exploration, logical										
		agents, architecture of artificial										
		intelligence systems, expert										
		systems, observational learning,										
		statistical learning methods,										
		probabilistic processing of										
		linguistic information, semantic										
		models, natural language										
		processing systems.										
31	Fundamentals of	The course is aimed at forming a	5		v		v	v				
	students' research work	comprehensive understanding of										
		the specifics of scientific										
		research; mastering research										
		methods that are most relevant to										
		the subject of research; acquiring										
		skills and abilities for										
		independent research activities.										
		The course content includes the										
		basic concepts and classification										
		of science and scientific										
		information: its sources and										
		methods of processing; types and										
		forms of educational research and										

		research work of university students. The requirements for the technical design of scientific work are considered.										
32	Fundamentals of sustainable development and ESG projects in Kazakhstan	Objective: students to master the theoretical foundations and practical skills in the field of sustainable development and ESG, as well as to form an understanding of the role of these aspects in the modern economic and social development of Kazakhstan. Content: introduces the principles of sustainable development and the implementation of ESG practices in Kazakhstan, includes the study of national and international standards, the analysis of successful ESG projects and strategies for their implementation in enterprises and organizations	5		×							
	Legal regulation of intellectual property	Objective: to form a holistic view of the system of legal regulation of intellectual property, including the basic principles, mechanisms for the protection of intellectual property rights and the specifics of their implementation. Content: The discipline covers the fundamentals of IP law, including copyright, patents, trademarks, and industrial	5		v							

		designs. Students learn how to protect and manage intellectual property rights, as well as consider legal disputes and how to resolve them.												
34	1C programming	The course provides a theoretical framework and discusses solutions to specific problems. The objects with which the business logic of any solutions operating on the 1C platform is implemented are being studied.:Company. Topics are discussed on how to configure the system depending on the needs of a particular organization, make changes to software solutions so that users can use them as efficiently as possible, configure databases and update the system.	5		v			v		v				
35	Designing secure Web applications	The main trends in the development of Web technologies. Basic standards of the Web network. The concept of Web applications and approaches to their development. Server controls. The structure and design of the Web application. Web application security. Development of Web services. Organization of Web application security.	5				v					v		
36	Capstone project 2	The course is aimed at studying and developing students'	5	v				v		v	v			

		understanding of the process of														
		attracting investments and														
		scaling a business; developing														
		practical skills in the field of														
		attracting investments in a														
		startup. During the course of the														
		discipline, students consider the														
		following issues: searching and														
		identifying various sources of														
		financing and selecting potential														
		investors for a business; applying														
		to accelerators; preparing														
		investment documentation;														
		creating investment														
		presentations; presenting a														
		project to a potential investor.														
37	Capstone project 1	The purpose of the course is to	5	v					v	•		V	v			
		apply project management														
		techniques, ways to transform														
		ideas into a specific solution, and														
		determine the most optimal														
		approach to its implementation.														
		Course participants will gain a														
		holistic understanding of the														
		process, key techniques, and														
		tools needed to design, develop,														
		and further develop their														
	and further develop their products and services.															
		The	cycle of	profi	ile di	scip	lines									
			Compor	nent (of ch	oice										

38	Cloud Technology Security	The course is designed to explore the basic aspects of security in cloud environments. The training includes familiarization with the main threats and risks associated with cloud computing, as well as methods and tools for their prevention and management. Students study the principles of data protection, authentication	4	V		V						
		authorization, encryption,										
		monitoring, and auditing in the										
		context of cloud environments.										
39	Biometrics and neural	The course is aimed at studying	4	v			V		v			
	networks	biometric methods of information										
		security. Issues under										
		consideration: Static and										
		dynamic biometrics. Artificial										
		areas of application Neural										
		network learning algorithms										
		Errors of the first and second										
		kind. Neural network models for										
		biometric image recognition.										
40	Information security	The course covers the basic	5	v			v					
	and object-oriented	concepts of object-oriented										
	programming	programming and application										
		development. The following										
		issues are considered: application										
		vulnerabilities, their										
		classification; technologies for										
		ensuring information security of										
		in using specialized tools to										
		in using specialized tools to			1 1							

		identify vulnerabilities and protect applications at the design and implementation, configuration and operation stages.												
41	Database organization and security	The course program is aimed at familiarizing students with the basics of organizing secure databases and their application to solve real-world problems. The course is dedicated to the application of database technology to solve practical problems of database development and database applications.	5					v			v			
42	Socio-legal aspects of IS and computer forensics	The purpose of mastering the discipline is to familiarize students with the legal and social aspects of information security and the basics of computer forensics and cybercrime investigation. Issues covered in the course regarding the application of regulatory legal and other documents regulating information security. Students' knowledge and skills will help them solve computer-related crimes, study digital evidence, and use methods to find, obtain, and consolidate such evidence	5		v								v	
43	Computer information	Basic concepts, methods and technologies for protecting	4	v		v	•							

44	Python for solving information security problems	computer information, technologies for countering bookmarks; the use of modern technologies to solve practical problems of protecting computer information. The purpose of mastering the discipline is to explore the possibilities of the Python language for solving information security problems. The issues covered in the course are: Basic Python language constructs, embedded and third-party Python libraries for solving information security problems, authentication, reverse engineering, test automation, data protection from cross-site query forgery,	4	v						v				v			
		extraction and selection of															
		various data characteristics.															
		development of cryptographic															
		algorithms.															
			Cycle o	f pro	file d	lisci	pline	es,	<u> </u>	L	1		I	I		1	
			elec	tive	comj	pone	ent										
45.	Administration of systems and networks	The material is mostly practical and contains a minimal amount of theory. The course is suitable	5					v							v		V
		for both novice system administrators who want to set up company servers, and network															

		engineers, since most of the network equipment runs Linux and Windows.										
46.	Smart Contract Architecture	The course aims to understand the many possibilities of creating decentralized applications using the Web3 stack and Solidity language on the Ethereum Virtual Machine (EVM).Main topics: introduction to blockchain and Ethereum, introduction to smart contracts, blockchain technology and support for Turing-complete languages, virtual machines, introduction to the pipeline deep development, deep immersion in Solidity, global variables and functions, expressions and control structures, object-oriented constructions, experiments with external libraries, unit testing and debugging of contracts, deployment and other smart contract platforms.	5		v				v			
47	Internet of Things security	Current components of typical IoT devices; trends for the future; limitations and interactions between the physical world and the IoT device; key network components for connecting an IoT device to the Internet; IoT security issues.	5		v							v
48	Network technology security	Modern network technologies and the main trends in the	5		V					v		

		creation of computer networks										
		Fundamentals of network										
		technologies and terminology										
		Pagia natwork models. Mathada										
		basic network models. Methods										
		of network structuring,										
		topologies, types of networks,										
		services, requirements. Switching										
		methods. Networking										
		technologies. Standards,										
		protocols, access methods,										
		network configurations. Routing										
		protocols, addressing, and										
		switching. VLSM, CIDR, and										
		VLSM technologies. Wireless										
		technology. Designing local area										
		networks. Cybersecurity.										
		Vulnerabilities of software and										
		hardware of network										
		technologies, classification.										
		Cybersecurity of network										
		technologies. Corporate network										
		security. Security management.										
49	Blockchain business	The course focuses on the	5		v			v		v		
	models	analysis of entrepreneurship and										
		innovation management based on										
		blockchain technology. Main										
		topics: the importance of										
		innovation, the innovative nature										
		of digital currencies / blockchain										
		/ DLT, the management and										
		dissemination of blockchain										
		innovations, the transformation										
		of blockchain ideas into a										
		business plan, the application of										

		design thinking and strategy in blockchain projects, the analysis and management of risks associated with blockchain, fundraising for the blockchain project, the explanation of smart contracts and algorithmic										
		management, the study of decentralized autonomous										
		organizations (DAO),										
		understanding issues related to										
		human resource management in										
		the blockchain.	~									
50	Introduction to web3	The course is based on an understanding of the basic	5				v		v			
		principles of decentralization and										
		the use of web 3 to create various										
		types of decentralized										
		applications. Main topics: the										
		difference between web2 and										
		web3 the basic principles of										
		decentralization, distributed IPFS										
		and Swarm systems. Ethereum										
		protocols, creation of smart										
		contracts for voting tasks, asset										
		management and identification.										
51	Decentralized	The course aims to learn the	5		v		v			v		
	Applications	technical skills needed to create										
		decentralized applications on										
		public blockchains. Also, the										
		development of applications that										
		perform business transactions										
		without the participation of a										
		trusted third party. The course										

		covers the main components of a decentralized application (App), social and design issues that hinder the implementation of dApps, smart contracts written in the Solidity programming language, and the development environment necessary for writing, testing, and deploying Ethereum dApps.										
52	Cryptographic information security systems	Block-based encryption systems. The components of a modern block cipher. Execution modes of block ciphers. Streaming encryption systems. Pseudorandom number generators. Principles of using pseudorandom number generators in stream encryption. Asymmetric encryption systems. Effective encryption. Key distribution. Cryptographic protocols. Hash functions. Electronic and digital signatures	5					Ŷ	v	v		
53	The Mathematics of Cryptography	Purpose: to study the mathematical foundations of cryptography, to teach students information security methods and their use in the field of information security. Contents: cryptology, cryptography, cryptanalysis, encryption, durability, security, image security, authenticity, modern	5			v	v		v			

		cryptographic methods of information protection, encryption, mathematical foundations of algorithms of asymmetric cryptosystems, mathematical foundations of algorithms of symmetric cryptosystems, research methods of cryptographic algorithms, models of encryption systems, mathematical foundations of algorithms of electronic digital signature, cryptographic key management, steganography.											
54	Microcontrollers	Programmable logic controllers (PLCs, PLC) are microprocessor- based devices designed to perform control algorithms, the principle of operation of the PLC is to collect and process data from the user's application program with the output of control signals to actuators; the PLC can process discrete and analog signals, control valves, servos, frequency converters and other devices; solved tasks represent a set of programs; tasks can be called cyclically, by event, with maximum frequency.	5		v						Ŷ		
55	Organization and	The purpose of the information	5					v		v		v	
	management of the	security service. Information											
	information security	Security Service as an											
	SCIVICE	mormation security management											

		body and an integral part of the										
		security system. Types and types										
		of organizational structures of the										
		information security service										
		Organizational foundations and										
		principles of the information										
		security service. The procedure										
		for creating an information										
		security service. Principles of										
		organization and operation of the										
		information security service										
		Organization of interaction										
		between the information security										
		service and departments and										
		external information security										
		services. Technology, principles										
		and methods of information										
		security service management										
56	Organization of	The main definitions.	5					v		v	v	
	microprocessor	characteristics, applications and										
	systems	features of microprocessor tools.										
	5	Organization of microprocessor										
		systems. Designing										
		microprocessor systems.										
		Representation levels of a										
		microprocessor system.										
		Architecture of Intel family of										
		microprocessors. Operating										
		modes of microprocessors.										
		Organization of the memory										
		subsystem in a PC. The main										
		features of RISC processors. A										
		system of interruptions and										
		exceptions. Types and										

r			1	1		1 1		- T		1	r	1	1		T
		characteristics of interfaces. Programming the operation of individual blocks of microprocessor systems. Digital Signal Processors (DSPs). Trends in the development of microprocessors.													
57	Designing cryptographic information security systems	The course program is aimed at familiarizing students with the basic principles of designing cryptographic information security systems, the use of cryptographic information security methods in the design and operation of information and communication technologies, cryptographic key management, key generation, storage and distribution.	5						v		V				
58	Intrusion prevention and detection systems	Risks and channels of information leakage, classification of information security violators. Extended persistent threats. Data leakage protection technologies. Data Leakage Prevention Systems (DLPs). Tasks of DLP systems, components of a data leak prevention system. Classification of DLP systems, methods for detecting confidential information. Stages of DLP systems. Development of a data leak prevention system.	5	v			v						v		V

		Analytical tools for incident investigation and analysis. IPC technologies, IPC tasks, components. Integration of DLP systems with IPC/IDS and SIEM systems.											
59	Standardization and	Development of standardization	5				,	v	v				
	certification of	and certification in the field of											
	cryptographic tools	information security.											
		Standardization and certification											
		– prerequisites, goals and											
		objectives. The conceptual model											
		of information security. Theory											
		and practice of standardization											
		and certification in the field of											
		information security.											
		Development of a functional											
		model of standardization and											
		certification. General criteria for											
		assessing information technology											
		security. Problems and prospects											
		of standardization and											
		certification development.											
		Technical specifications and											
		regulatory standards for											
		standardization and certification.											
		Modern principles of											
		standardization and certification.											
60	Technical means and	Information protection should			v						v	v	
	methods of information	ensure that damage is prevented											
	protection	as a result of loss (theft, loss,											
		distortion, forgery) of											
		information in any form.											
		Information security measures											

should be organized in full							
should be organized in full							
compliance with applicable laws							
and regulations on information							
security and the interests of							
information users. To ensure a							
high degree of information							
protection, it is necessary to							
constantly solve complex							
scientific and technical problems							
of developing and improving its							
protection tools.							

5. Curriculum of the educational program